101 research outputs found

    In-situ measurement of the ozone concentration in the Arctic Airborne Measurement Program 2002(AAMP02)

    Get PDF
    From 5 to 14 March, 2002, the Arctic Airborne Measurement Program 2002(AAMP02) was conducted on a round-trip flight between Nagoya, Japan, and Longyearbyen, Svalbard, via Anchorage and Barrow, U.S.A. and the North Pole using a chartered twin-jet aircraft, the Gulfstream-II(G-II). On board the G-II, in-situ measurements of the ozone concentration were carried out every 12s in order to obtain information on air mass differences and advection. Vertical profiles of the ozone concentration observed over Longyearbyen agreed well with those observed by ozone sonde launched around the same time from Ny-Ålesund, about 100km north of Longyearbyen. The ozone variations observed in the upper troposphere and lower stratosphere showed negative correlation with the CO_2 concentration, suggesting vertical displacements of air masses. However, it was also observed that the ozone concentration fluctuated considerably with little consistency with the meteorological field

    Spacio-temporal distributions of atmospheric nitrous oxide and its isotopocules in the Arctic region

    Get PDF
    第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ

    Improved scientific ballooning applied to the cryo-sampling experiment at Syowa Station

    Get PDF
    On January 3, 1998, a large balloon (30000 m^3) was successfully launched at Syowa Station for the cryo-sampling of the stratospheric atmosphere. The sampling system splashed down in the Liitzow-Holm Bay and recovered by icebreaker SHIRASE. The cryo-sampling at Antarctica was the first trial in the world and the recovery of a heavy payload was also the first challenge at Syowa Station. A lot of new ballooning technologies were applied to this operation, such as compact balloon launching equipments, a reliable recovery system, a handy ground radio station for the balloon tracking and data acquisition and so forth. The realtime flight data could be received at National Institute of Polar Research (NIPR) in Tokyo by using the computer network via INMARSAT. At NIPR the collaboration members could monitor the entire process of the experiment at Syowa Station in detail and send some instructions and advice. This balloon experiment showed an extended possibility of a large scale scientific ballooning at Syowa Station. This paper deals with those newly developed balloon engineering technologies

    A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches

    Get PDF
    Atmospheric inversions use measurements of atmospheric CO2 gradients to constrain regional surface fluxes. Current inversions indicate a net terrestrial CO2 sink in China between 0.16 and 0.35 PgC/yr. The uncertainty of these estimates is as large as the mean because the atmospheric network historically contained only one high altitude station in China. Here, we revisit the calculation of the terrestrial CO2 flux in China, excluding emissions from fossil fuel burning and cement production, by using two inversions with three new CO2 monitoring stations in China as well as aircraft observations over Asia. We estimate a net terrestrial CO2 uptake of 0.39-0.51 PgC/yr with a mean of 0.45 PgC/yr in 2006-2009. After considering the lateral transport of carbon in air and water and international trade, the annual mean carbon sink is adjusted to 0.35 PgC/yr. To evaluate this top-down estimate, we constructed an independent bottom-up estimate based on ecosystem data, and giving a net land sink of 0.33 PgC/yr. This demonstrates closure between the top-down and bottom-up estimates. Both top-down and bottom-up estimates give a higher carbon sink than previous estimates made for the 1980s and 1990s, suggesting a trend towards increased uptake by land ecosystems in China.</p

    The Northern Eurasia Earth Science Partnership: An Example of Science Applied to Societal Needs

    Get PDF
    Northern Eurasia, the largest landmass in the northern extratropics, accounts for ~20% of the global land area. However, little is known about how the biogeochemical cycles, energy and water cycles, and human activities specific to this carbon-rich, cold region interact with global climate. A major concern is that changes in the distribution of land-based life, as well as its interactions with the environment, may lead to a self-reinforcing cycle of accelerated regional and global warming. With this as its motivation, the Northern Eurasian Earth Science Partnership Initiative (NEESPI) was formed in 2004 to better understand and quantify feedbacks between northern Eurasian and global climates. The first group of NEESPI projects has mostly focused on assembling regional databases, organizing improved environmental monitoring of the region, and studying individual environmental processes. That was a starting point to addressing emerging challenges in the region related to rapidly and simultaneously changing climate, environmental, and societal systems. More recently, the NEESPI research focus has been moving toward integrative studies, including the development of modeling capabilities to project the future state of climate, environment, and societies in the NEESPI domain. This effort will require a high level of integration of observation programs, process studies, and modeling across disciplines

    Methane Emission Estimates by the Global High-Resolution Inverse Model Using National Inventories

    Get PDF
    We present a global 0.1° × 0.1° high-resolution inverse model, NIES-TM-FLEXPART-VAR (NTFVAR), and a methane emission evaluation using the Greenhouse Gas Observing Satellite (GOSAT) satellite and ground-based observations from 2010–2012. Prior fluxes contained two variants of anthropogenic emissions, Emissions Database for Global Atmospheric Research (EDGAR) v4.3.2 and adjusted EDGAR v4.3.2 which were scaled to match the country totals by national reports to the United Nations Framework Convention on Climate Change (UNFCCC), augmented by biomass burning emissions from Global Fire Assimilation System (GFASv1.2) and wetlands Vegetation Integrative Simulator for Trace Gases (VISIT). The ratio of the UNFCCC-adjusted global anthropogenic emissions to EDGAR is 98%. This varies by region: 200% in Russia, 84% in China, and 62% in India. By changing prior emissions from EDGAR to UNFCCC-adjusted values, the optimized total emissions increased from 36.2 to 46 Tg CH4 yr−1 for Russia, 12.8 to 14.3 Tg CH4 yr−1 for temperate South America, and 43.2 to 44.9 Tg CH4 yr−1 for contiguous USA, and the values decrease from 54 to 51.3 Tg CH4 yr−1 for China, 26.2 to 25.5 Tg CH4 yr−1 for Europe, and by 12.4 Tg CH4 yr−1 for India. The use of the national report to scale EDGAR emissions allows more detailed statistical data and country-specific emission factors to be gathered in place compared to those available for EDGAR inventory. This serves policy needs by evaluating the national or regional emission totals reported to the UNFCCC

    Methane Emission Estimates by the Global High-Resolution Inverse Model Using National Inventories

    Get PDF
    We present a global 0.1° × 0.1° high-resolution inverse model, NIES-TM-FLEXPART-VAR (NTFVAR), and a methane emission evaluation using the Greenhouse Gas Observing Satellite (GOSAT) satellite and ground-based observations from 2010–2012. Prior fluxes contained two variants of anthropogenic emissions, Emissions Database for Global Atmospheric Research (EDGAR) v4.3.2 and adjusted EDGAR v4.3.2 which were scaled to match the country totals by national reports to the United Nations Framework Convention on Climate Change (UNFCCC), augmented by biomass burning emissions from Global Fire Assimilation System (GFASv1.2) and wetlands Vegetation Integrative Simulator for Trace Gases (VISIT). The ratio of the UNFCCC-adjusted global anthropogenic emissions to EDGAR is 98%. This varies by region: 200% in Russia, 84% in China, and 62% in India. By changing prior emissions from EDGAR to UNFCCC-adjusted values, the optimized total emissions increased from 36.2 to 46 Tg CH4 yr−1 for Russia, 12.8 to 14.3 Tg CH4 yr−1 for temperate South America, and 43.2 to 44.9 Tg CH4 yr−1 for contiguous USA, and the values decrease from 54 to 51.3 Tg CH4 yr−1 for China, 26.2 to 25.5 Tg CH4 yr−1 for Europe, and by 12.4 Tg CH4 yr−1 for India. The use of the national report to scale EDGAR emissions allows more detailed statistical data and country-specific emission factors to be gathered in place compared to those available for EDGAR inventory. This serves policy needs by evaluating the national or regional emission totals reported to the UNFCCC

    Preliminary report of "Arctic Airborne Measurement Program 2002" (AAMP02)

    Get PDF
    The Arctic Airborne Measurement Program 2002(AAMP 02) campaign was carried out in March 2002 as one of the sub programs of the project Variations of atmospheric constituents and their climate impact in the Arctic". The main goal of the project was to investigate the transport, transformation and radiative effect of trace gases and aerosols, and their role in the global climate. An instrumented jet plane, Gulfstream II(G-II), was flown from Nagoya, Japan via Barrow, Alaska to Longyearbyen(78°N , 15°E ), Svalbard, crossing the Arctic Ocean in the lower stratospher. Three local flights were made over the Greenland Sea around Svalbard and two profile flights near Barrow. The plane was equipped with CO_2 and ozone analyzers, gas and aerosol sampling systems, aerosol particle counter, nephelometer, absorption photometer, PMS particle probes, sunphotometer, dew point hygrometer and dropsonde system. During the campaign, intensitive surface operations were also conducted at Ny-&Aring;lesund(79°N , 12°E ), Svalbard. Vertical profiles of several trace gases gave information about transport, a new observation by sunphotometer derived an aerosol optical depth in the stratosphere, and another new observation by dropsonde gave information on the polar vortex

    Temporal Characteristics of CH4 Vertical Profiles Observed in the West Siberian Lowland Over Surgut From 1993 to 2015 and Novosibirsk From 1997 to 2015

    Get PDF
    We have carried out monthly flask sampling using aircraft, in the altitude range of 0-7 km, over the boreal wetlands in Surgut (61°N, 73°E; since 1993) and a pine forest near Novosibirsk (55°N, 83°E; since 1997), both located in the West Siberian Lowland (WSL). The temporal variation of methane (CH4) concentrations at all altitudes at both sites exhibited an increasing trend with stagnation during 2000-2006 as observed globally from ground-based networks. In addition to a winter maximum as seen at other remote sites in northern middle to high latitudes, another seasonal maximum was also observed in summer, particularly in the lower altitudes over the WSL, which could be attributed to emissions from the wetlands. Our measurements suggest that the vertical gradient at Surgut has been decreasing; the mean CH4 difference between 5.5 km and 1.0 km changed from 64 ± 5 ppb during 1995-1999 to 37 ± 3 ppb during 2009-2013 (mean ± standard error). No clear decline in the CH4 vertical gradient appeared at Novosibirsk. Simulations using an atmospheric chemistry-transport model captured the observed decrease in the vertical CH4 gradient at Surgut when CH4 emissions from Europe decreased but increased from the regions south of Siberia, for example, East and South Asia. At Novosibirsk, the influence of the European emissions was relatively small. Our results also suggest that the regional emissions around the WSL did not change significantly over the period of our observations
    corecore